Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Solution
Let I = `int "dx"/(4"x"^2 - 1)`
`= 1/4 int "dx"/("x"^2 - 1/4)`
`= 1/4 int "dx"/("x"^2 - (1/2)^2)`
`= 1/4 xx 1/(2 xx 1/2) log |("x" - 1/2)/("x" + 1/2)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
Alternate Method:
Let I = `int "dx"/(4"x"^2 - 1) = int "dx"/((2"x"^2) - (1)^2)`
`= 1/(2 xx 1) xx 1/2 log |("2x" - 1)/("2x" + 1)|` + c
∴ I = `1/4` log `|("2x" - 1)/("2x" + 1)|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(log x)^2/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 1/(xsin^2(logx)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).