English

∫x2+2x+5 dx = ______________ - Mathematics and Statistics

Advertisements
Advertisements

Question

`int sqrt(x^2 + 2x + 5)` dx = ______________

Options

  • `(x + 1) sqrt(x^2 + 2x + 5) + log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`

  • `(x + 2) sqrt(x^2 + 2x + 5) + log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`

  • `(("x" + 2)/2) sqrt(x^2 + 2x + 5) + 1/2 log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`

  • `(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`

MCQ
Fill in the Blanks

Solution

`(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: `int "e"^sqrt"x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int (1+x+x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×