हिंदी

Integrate the functions: cosxx - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

`cos sqrt(x)/sqrtx`

योग

उत्तर

Let I = `int (cos sqrtx)/sqrtx` dx

Put `sqrt x = t` 

`1/(2 sqrt x)` dx = dt or  `1/sqrt x` dx = 2 dt

Hence, `I = 2 int cos t dt`

`= 2 sin t + C = 2 sin sqrt x + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.2 [पृष्ठ ३०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.2 | Q 26 | पृष्ठ ३०५

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Write a value of\[\int a^x e^x \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int x^x (1 + logx)  "d"x`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×