English

∫ Cos 5 X Sin X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{\cos^5 \text{ x dx }}{\sin x}\]
\[ = \int\frac{\cos^4 x \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^2 \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \cos  \text{ x dx }}{\sin x}\]
\[ = \int\left( \frac{1 + \sin^4 x - 2 \sin^2 x}{\sin x} \right) \cos \text{ x dx }\]
\[ \text{ Putting  sin x = t}\]
\[ \Rightarrow \cos \text{ x dx }= dt\]
\[ \therefore I = \int\left( \frac{1 + t^4 - 2 t^2}{t} \right)dt\]
\[ = \int\frac{dt}{t} + \int t^3 dt - 2\int\ t\ dt\]
\[ = \text{ ln  }\left| t \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{ ln }\left| \sin x \right| + \frac{1}{4} \sin^4 x - \sin^2 x + C .....................\left[ \because t = \sin x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 77 | Page 204

RELATED QUESTIONS

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


`int (log x)/(log ex)^2` dx = _________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int dx/(1 + e^-x)` = ______


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×