English

∫ Sin 6 X Cos X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{\sin^6 x \cdot}{\cos x}dx\]
\[ = \int\frac{\sin^6 x \cdot \cos x}{\cos^2 x}dx\]
\[ = \int\frac{\sin^6 x}{\left( 1 - \sin^2 x \right)}\cos \text{  x dx }\]
\[\text{  Putting  sin x = t}\]
\[ \Rightarrow \text{ cos  x  dx = dt}\]
\[ \therefore I = \int\frac{t^6}{\left( 1 - t^2 \right)}dt\]
\[ = \int\left( \frac{t^6 - 1 + 1}{1 - t^2} \right) dt\]
\[ = \int\frac{\left[ \left( t^2 \right)^3 - 1^3 \right]}{1 - t^2}dt + \int\frac{1}{1 - t^2}dt\]
\[ = \int\frac{\left( t^2 - 1 \right) \left( 1 + t^2 + t^4 \right)}{\left( 1 - t^2 \right)} + \int\frac{1}{1 - t^2}dt\]
\[ = - \int\left( t^4 + t^2 + 1 \right)dt + \int\frac{1}{1 - t^2}dt\]
\[ = - \left[ \frac{t^5}{5} + \frac{t^3}{3} + t \right] + \frac{1}{2} \text{ ln } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = - \frac{1}{5} \sin^5 x - \frac{1}{3} \sin^3 x - \sin x + \frac{1}{2} \text{ ln }\left| \frac{1 + \sin x}{1 - \sin x} \right| + C ...........\left[ \because t = \sin x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 78 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫      tan^5    x   dx `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int x \cos x\ dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×