मराठी

∫ Sin 6 X Cos X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{\sin^6 x \cdot}{\cos x}dx\]
\[ = \int\frac{\sin^6 x \cdot \cos x}{\cos^2 x}dx\]
\[ = \int\frac{\sin^6 x}{\left( 1 - \sin^2 x \right)}\cos \text{  x dx }\]
\[\text{  Putting  sin x = t}\]
\[ \Rightarrow \text{ cos  x  dx = dt}\]
\[ \therefore I = \int\frac{t^6}{\left( 1 - t^2 \right)}dt\]
\[ = \int\left( \frac{t^6 - 1 + 1}{1 - t^2} \right) dt\]
\[ = \int\frac{\left[ \left( t^2 \right)^3 - 1^3 \right]}{1 - t^2}dt + \int\frac{1}{1 - t^2}dt\]
\[ = \int\frac{\left( t^2 - 1 \right) \left( 1 + t^2 + t^4 \right)}{\left( 1 - t^2 \right)} + \int\frac{1}{1 - t^2}dt\]
\[ = - \int\left( t^4 + t^2 + 1 \right)dt + \int\frac{1}{1 - t^2}dt\]
\[ = - \left[ \frac{t^5}{5} + \frac{t^3}{3} + t \right] + \frac{1}{2} \text{ ln } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = - \frac{1}{5} \sin^5 x - \frac{1}{3} \sin^3 x - \sin x + \frac{1}{2} \text{ ln }\left| \frac{1 + \sin x}{1 - \sin x} \right| + C ...........\left[ \because t = \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 78 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin x \cos 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int \cos^3 (3x)\ dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×