Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
बेरीज
उत्तर
` ∫ { cos x dx}/{\sqrt{sin^2 x - 2 sin x - 3}}`
` text{ let } \sin x = t`
` ⇒ cos x dx = dt `
`Now,∫ { cos x dx}/{\sqrt{sin^2 x - 2 sin x - 3}}`
\[ = \int\frac{dt}{\sqrt{t^2 - 2t - 3}}\]
\[ = \int\frac{dt}{\sqrt{t^2 - 2t + 1 - 1 - 3}}\]
\[ = \int\frac{dt}{\sqrt{\left( t - 1 \right)^2 - 2^2}}\]
\[ = \text{ log }\left| t - 1 + \sqrt{\left( t - 1 \right)^2 - 2^2} \right| + C\]
\[ = \text{ log }\left| t - 1 + \sqrt{t^2 - 2t - 3} \right| + C\]
\[ = \text{ log } \left| \sin x - 1 + \sqrt{\sin^2 x - 2 \sin x - 3} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int \cot^5 x\ dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`