मराठी

∫ ( X − 1 ) 2 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int\frac{\left( x - 1 \right)^2 \text{ dx}}{x^4 + x^2 + 1}\]
\[ = \int\left( \frac{x^2 - 2x + 1}{x^4 + x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx - \int\frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[ = I_1 - I_2 \]
\[\text{ where , } \]
\[ I_1 = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1}\]
\[ I_2 = \int \frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[\text{ Now,} \]
\[ I_1 = \int \left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ I_1 = \int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} + 1} \right)dx\]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2}\]
\[\text{ Putting x }- \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I_1 = \int \frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C_1 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) + C_1 \]
\[\text{ And }\]
\[ I_2 = \int\frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[\text{ Putting x}^2 = t\]
\[ \Rightarrow 2x \text{ dx  }= dt\]
\[ I_2 = \int \frac{dt}{t^2 + t + 1}\]
\[ = \int\frac{dt}{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C_2 \]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{2t + 1}{3} \right) + C_2 \]
\[ \therefore I = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) - \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 9 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×