मराठी

∫ Cos 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^3 \sqrt{x}\ dx\]
बेरीज

उत्तर

\[\text{ Let, I } = \int \cos^3 \sqrt{x} \text{ dx } . . . . . \left( 1 \right)\]
\[\text{ Consider, }\sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} dt\]
\[ \Rightarrow dx = 2t dt\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \cos^3 \text{ t  2t  dt }\]
\[ = 2\int t  \text{ cos}^3\text{  t   dt}\]
\[ = 2\int \text{ t }\left( \frac{3\cos t + \cos3t}{4} \right) dt \left( \text{ Since,} \cos 3A = 4 \cos^3 A - 3\cos  A \right)\]
\[ = \frac{3}{2}\int \text{ t  cos  t  dt } + \frac{1}{2}\int t \text{ cos  3t  dt }\]
\[ = \frac{3}{2}\left[ t\int \text{ cos t dt } - \int\left( \frac{d t}{d t}\int\text{ cos  t  dt } \right)dt \right] + \frac{1}{2}\left[ t\int \text{ cos  3t  dt }- \int\left( \frac{d t}{d t}\int\text{ cos 3t  dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ t \text{ sin  t }- \int\text{ sin  t  dt } \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} - \frac{1}{3}\int\text{ sin  3t  dt } \right]\]
\[ = \frac{3}{2}\left[ t \sin t + \cos t \right] + \frac{1}{2}\left[ \frac{t \sin3t}{3} + \frac{1}{9}\cos 3t \right] + C\]
\[ = \frac{3}{2}t \sin t + \frac{3}{2}\cos t + \frac{1}{6}t \sin3t + \frac{1}{18}\cos3t + C\]
\[ = \frac{3}{2}\sqrt{x}\sin\sqrt{x} + \frac{3}{2}\cos\sqrt{x} + \frac{1}{6}\sqrt{x}\sin\left( 3\sqrt{x} \right) + \frac{1}{18}\cos\left( 3\sqrt{x} \right) + C\]

Note: The final answer in indefinite integration may vary based on the integration constant.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 55 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×