मराठी

∫ 1 ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x + 1 \right) \sqrt{x^2 + x + 1}}\]
\[\text{ Putting  x }+ 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\left( \frac{1}{t}, - , 1 \right)^2 + - 1 + 1\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\frac{1}{t^2} - + 1 + \frac{2}{t}\frac{1}{t}}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + t - 2t + 1}}{t}}\]
\[ = - \int \frac{dt}{\sqrt{t^2 - t + 1}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t - \frac{1}{2} + \sqrt{t^2 - t + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \sqrt{\frac{1}{\left( x + 1 \right)^2} - \frac{1}{x + 1} + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{\left( x + 1 \right)^2 - \left( x + 1 \right) + 1}}{x + 1} \right| + C\]
\[ = - \text{ log }\left| \frac{1}{x + 1} - \frac{1}{2} + \frac{\sqrt{x^2 + x + 1}}{x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 9 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×