मराठी

∫ Sin 4 X − 2 1 − Cos 4 X E 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{\sin 4x - 2}{1 - \cos 4x} \right) e^{2x} \text{ dx}\]
\[ = \int\left( \frac{2 \sin 2x \cos 2x - 2}{2 \sin^2 2x} \right) e^{2x} \text{ dx}\]
\[ = \int\left[ \cot \left( 2x \right) - {cosec}^2 \left( 2x \right) \right] e^{2x} \text{ dx}\]
\[\text{ Let e}^{2x} \cot \left( 2x \right) = t\]
\[ \Rightarrow \left[ 2 e^{2x} \cot \left( 2x \right) + e^{2x} \left\{ - {cosec}^2 \left( 2x \right) \right\} \times 2 \right] dx = dt\]
\[ \Rightarrow e^{2x} \left[ \cot 2x - {cosec}^2 \left( 2x \right) \right] dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int dt\]
\[ = \frac{t}{2} + C\]
\[ = \frac{1}{2}\text{  e}^{2x} \text{ cot } \left( \text{ 2x} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 129 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{x (3 + \log x)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \cos x^4 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×