Advertisements
Advertisements
प्रश्न
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
बेरीज
उत्तर
\[\int\frac{x \tan^{- 1} x^2}{1 + x^4} dx\]
\[\text{Let} \tan^{- 1} x^2 = t\]
\[ \Rightarrow \frac{1}{1 + \left( x^2 \right)^2} \times 2x = \frac{dt}{dx}\]
` ⇒ {x dx}/{1 + x^4} = {dt}/{2}`
\[Now, \int\frac{x \tan^{- 1} x^2}{1 + x^4} dx\]
\[ = \frac{1}{2}\ ∫ t . dt\]
\[ = \frac{1}{2} \times \frac{t^2}{2} + C\]
\[ = \frac{\left( \tan^{- 1} x^2 \right)^2}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
` ∫ sec^6 x tan x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]