Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5 \cos^3 x}{2 \sin^2 x \cos^2 x} + \frac{6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5}{2} \frac{\cos x}{\sin^2 x} + 3\frac{\sin x}{\cos^2 x} \right)dx\]
\[ = \frac{5}{2}\int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \right)dx + 3\int\frac{\sin x}{\cos x} \times \frac{1}{\cos x}dx\]
`= {5}/{2}∫("cosec "x cot x ) dx + 3 ∫ sec x tan x dx`
\[ = \frac{5}{2}\left( - \text{cosec x} \right) + 3 \sec x + C\]
\[ = - \frac{5}{2}\text{cosec x} + 3 \sec x + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]