मराठी

∫ 1 4 Cos 2 X + 9 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]


\[ \Rightarrow I = \int \frac{\frac{1}{\cos^2 x}}{4 + 9 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{4 + 9 \tan^2 x}dx\]
\[\text{ Let tan } x = t\]
` ⇒  sec^2  x   dx = dt `
\[ \therefore I = \int \frac{dt}{4 + 9 t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\frac{4}{9} + t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\left( \frac{2}{3} \right)^2 + t^2}\]
\[ = \frac{1}{9} \times \frac{3}{2} \text[\text{  tan }^{- 1} \left( \frac{t}{\frac{2}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3 \tan x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 1 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫   tan   x   sec^4  x   dx  `


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int \cos^3 (3x)\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×