Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{1}{4 \sin^2 x + 5 \cos^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int\frac{\sec^2 x}{4 \tan^2 x + 5}\text{ dx }\]
\[\text{ Let tan } x = t\]
\[ \Rightarrow \sec^2\text{ x }dx = dt\]
\[ \therefore I = \int \frac{dt}{4 t^2 + 5}\]
\[ = \frac{1}{4}\int \frac{dt}{t^2 + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dt}{t^2 + \left( \frac{\sqrt{5}}{2} \right)^2}\]
\[ = \frac{1}{4} \times \frac{2}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{t}{\sqrt{5}} \times 2 \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ tan }^{- 1} \left( \frac{2 \tan x}{\sqrt{5}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
Write a value of
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .