मराठी

∫ X 2 + 9 X 4 + 81 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 

बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \left( \frac{x^2 + 9}{x^4 + 81} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[I = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{x^2 + \frac{81}{x^2}}\]
\[ = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{x^2 + \left( \frac{9}{x} \right)^2 - 2 \times x \times \frac{9}{x} + 2 \times x \times \frac{9}{x}}\]
\[ = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{\left( x - \frac{9}{x} \right)^2 + \left( \sqrt{18} \right)^2}\]
\[\text{ Putting x }- \frac{9}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{9}{x^2} \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + \left( \sqrt{18} \right)^2}\]
\[ = \int\frac{dt}{t^2 + \left( 3\sqrt{2} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{t}{3\sqrt{2}} \right) + C\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{x - \frac{9}{x}}{3\sqrt{2}} \right) + C\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{x^2 - 9}{3\sqrt{2}x} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 3 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×