मराठी

∫ 3 X + 1 √ 5 − 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]

बेरीज

उत्तर

 

  ` \text{ Let I }=∫  {x   dx}/{\sqrt{8 + x - x^2}} `

\[\text{ Consider }, x = A\frac{d}{dx} \left( 8 + x - x^2 \right) + B\]

\[x = A \left( 1 - 2x \right) + B\]

\[x = \left( - 2A \right) x + A + B\]

\[\text{ Equating Coefficients of like terms }\]

\[ - 2A = 1\]

\[ \Rightarrow A = - \frac{1}{2}\]

\[\text{ And }\]

\[A + B = 0\]

\[ \Rightarrow - \frac{1}{2} + B = 0\]

\[ \Rightarrow B = \frac{1}{2}\]

\[ \therefore x = - \frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}\]

\[\text{ Then }, \]

\[I = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + x - x^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + \frac{1}{4} - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[\text{ let 8 + x - x^2 = t }\]

\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]

\[ \therefore I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{33}}{2}} \right) + C\]

\[ = - \sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

\[ = - \sqrt{8 + x - x^2} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 6 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×