Advertisements
Advertisements
प्रश्न
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
उत्तर
` \text{ Let I }=∫ {x dx}/{\sqrt{8 + x - x^2}} `
\[\text{ Consider }, x = A\frac{d}{dx} \left( 8 + x - x^2 \right) + B\]
\[x = A \left( 1 - 2x \right) + B\]
\[x = \left( - 2A \right) x + A + B\]
\[\text{ Equating Coefficients of like terms }\]
\[ - 2A = 1\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{ And }\]
\[A + B = 0\]
\[ \Rightarrow - \frac{1}{2} + B = 0\]
\[ \Rightarrow B = \frac{1}{2}\]
\[ \therefore x = - \frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}\]
\[\text{ Then }, \]
\[I = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + x - x^2}}\]
\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x \right)}}\]
\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}}\]
\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + \frac{1}{4} - \left( x - \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]
\[\text{ let 8 + x - x^2 = t }\]
\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]
\[ \therefore I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{33}}{2}} \right) + C\]
\[ = - \sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]
\[ = - \sqrt{8 + x - x^2} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]