Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I }= \int \frac{\text{ sin }\left( \text{ 2x }\right)}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[ = \int \frac{2 \sin x \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^4 x\]
\[ \Rightarrow I = \int \frac{\left( \frac{2 \sin x \cos x}{\cos^4 x} \right)}{\tan^4 x + 1}\text{ dx }\]
\[ = \int \frac{2 \tan x . \sec^2 x}{\left( \tan^2 x \right)^2 + 1} \text{ dx }\]
\[\text{ Let tan}^2 x = t\]
\[ \Rightarrow 2 \tan x \sec^2 x \text { dx } = dt\]
\[ = \int \frac{dt}{t^2 + 1}\]
\[ \therefore I = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \tan^2 x \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ tan^5 x dx `
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]