मराठी

∫ ( 4 X + 1 ) √ X 2 − X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\text{ Also, }4x + 1 = \lambda\frac{d}{dx}\left( x^2 - x - 2 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \lambda\left( 2x - 1 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \left( 2\lambda \right)x + \mu - \lambda\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 4\]

\[ \Rightarrow \lambda = 2\]

\[\text{ And }\]

\[\mu - \lambda = 1\]

\[ \Rightarrow \mu - 2 = 1\]

\[ \Rightarrow \mu = 3\]

\[ \therefore I = \int \left[ 2\left( 2x - 1 \right) + 3 \right] \sqrt{x^2 - x - 2} \text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2}dx + 3\int\sqrt{x^2 - x - 2}\text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2} \text{  dx }\]

\[ = 2 \int \left( 2x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{\left( x - \frac{1}{2} \right)^2 - 2 - \frac{1}{4}} \text{  dx }\]

\[ = \int \left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int\sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} \text{  dx }\]

\[\text{ Let x}^2 - x - 2 = t\]

\[ \Rightarrow \left( 2x - 1 \right)dx = dt\]

\[ \therefore I = 2\int \sqrt{t} \text{ dt } + 3\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} - \frac{\left( \frac{3}{2} \right)^2}{2}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| \right]\]

\[ = 2 \left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log } \left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

\[ = \frac{4}{3} \left( x^2 - x - 2 \right)^\frac{3}{2} + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 5 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^3}{x - 2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×