मराठी

∫ E X ( X − 1 2 X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int e^x \left( \frac{x - 1}{2 x^2} \right)dx\]

\[ = \frac{1}{2}\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx\]

\[\text{ here }\frac{1}{x} = f(x) \text{ Put  e}^x f(x) = t\]

\[ \Rightarrow - \frac{1}{x^2} = f'(x)\]

\[\text{ let e}^x \frac{1}{x} = t\]

\[\text{ Diff both sides w . r . t x}\]

\[\left( e^x \frac{1}{x} + e^x \frac{- 1}{x^2} \right) = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx = dt\]

\[ \therefore I = \frac{1}{2}\int dt\]

\[ = \frac{t}{2} + C\]

\[ = \frac{e^x}{2x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 5 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×