Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
बेरीज
उत्तर
\[\text{ Let I }= \int e^x \left( \frac{x - 1}{2 x^2} \right)dx\]
\[ = \frac{1}{2}\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx\]
\[\text{ here }\frac{1}{x} = f(x) \text{ Put e}^x f(x) = t\]
\[ \Rightarrow - \frac{1}{x^2} = f'(x)\]
\[\text{ let e}^x \frac{1}{x} = t\]
\[\text{ Diff both sides w . r . t x}\]
\[\left( e^x \frac{1}{x} + e^x \frac{- 1}{x^2} \right) = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I = \frac{1}{2}\int dt\]
\[ = \frac{t}{2} + C\]
\[ = \frac{e^x}{2x} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int x \cos^2 x\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]