मराठी

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^5 x\ dx\]
बेरीज

उत्तर

\[\text{ Let  I } = \int \cot^5 \text{ x  dx }\]
\[ = \int \cot^2 x \cdot \cot^3\text{ x  dx }\]
\[ = \int\left(\text{cosec}^2 x - 1 \right) \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx } - \int \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx }- \int\cot x \cdot \cot^2 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx }- \int\cot x \left( {cosec}^2 x - 1 \right)\text{   dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx } - \int\cot x \cdot \text{ cosec}^2\text{ x  dx }+ \int\cot\text{ x  dx }\]
\[\text{   Putting cot  x  = t   in  the  Ist  and  IInd  integral}\]
\[ \Rightarrow - \text{cosec}^2\text{ x  dx }= dt\]
\[ \Rightarrow \text{cosec}^2 \text{ x  dx }= - dt\]
\[ \therefore I = - \int t^3 dt + \int t \cdot dt + \int\cot\text{ x  dx }\]
\[ = - \frac{t^4}{4} + \frac{t^2}{2} + \text{ ln }\left| \sin x \right| + C\]
\[ = - \frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \text{ ln }\left| \sin x \right| + C .........\left( \because t = \cot x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 32 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×