मराठी

∫ 1 √ 7 − 3 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sqrt{7 - 3x - 2 x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \frac{3}{2}x - x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \left( x^2 - \frac{3}{2}x \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x^2 + \frac{3}{2}x + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x + \frac{3}{4} \right)^2 + \frac{9}{16}}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} + \frac{9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{56 + 9}{16} - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{65}}{4} \right)^2 - \left( x + \frac{3}{4} \right)^2}}\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{x + \frac{3}{4}}{\frac{\sqrt{65}}{4}} \right] + C\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left[ \frac{4x + 3}{\sqrt{65}} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.17 | Q 6 | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \sin x \cos x\ dx\]

 


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×