मराठी

∫ X 2 + 6 X − 8 X 3 − 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
बेरीज

उत्तर

We have,

\[I = \int\left( \frac{x^2 + 6x - 8}{x^3 - 4x} \right)dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x^2 - 4 \right)}dx\]

\[ = \int\frac{\left( x^2 + 6x - 8 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}dx\]

\[Let \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + 6x - 8}{x \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x \right) \left( x + 2 \right) + C \left( x \right) \left( x - 2 \right)}{x \left( x - 2 \right) \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + 6x - 8 = A \left( x^2 - 4 \right) + B \left( x^2 + 2x \right) + C \left( x^2 - 2x \right)\]

Putting `x - 2 = 0`

\[ \Rightarrow x = 2\]

\[4 + 6 \times 2 - 8 = A \times 0 + B \left( 4 + 4 \right)\]

\[ \Rightarrow 8 = B \times 8\]

\[ \Rightarrow B = 1\]

Putting `x = - 2`

\[4 - 12 - 8 = A \times 0 + B \times 0 + C \times 8\]
\[ \Rightarrow C = - 2\]

Putting `x = 0`

\[ - 8 = A \left( - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow A = 2\]

\[ \therefore I = \int\frac{2}{x} + \int\frac{dx}{x - 2} - 2\int\frac{dx}{x + 2}\]

\[ = 2 \log \left| x \right| + \log \left| x - 2 \right| - 2 \log \left| x + 2 \right| + C\]

\[ = \log x^2 + \log \left| x - 2 \right| - \log \left| x + 2 \right|^2 + C\]

\[ = \log \left| \frac{x^2 \left( x - 2 \right)}{\left( x + 2 \right)^2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 20 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×