Advertisements
Advertisements
प्रश्न
\[\int x^2 \cos 2x\ \text{ dx }\]
बेरीज
उत्तर
\[\int x^2 \text{ cos 2x dx }\]
` " Taking x"^2 " as the first function and cos 2x as the second function" .`
\[ = x^2 \int\text{ cos 2x dx } - \int\left( 2x\int\text{ cos 2x dx }\right)dx\]
\[ = \frac{x^2 \sin 2x}{2} - \int\frac{2x \sin 2x}{2}dx\]
\[ = \frac{x^2}{2}\sin 2x - \int x \text{ sin 2x dx }\]
\[ = \frac{x^2}{2}\sin 2x - \left[ x\int\sin2x - \int\left( \int\text{ sin 2x dx }\right)dx \right]\]
\[ = \frac{x^2}{2}\sin 2x - \left[ \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx \right]\]
\[ = \frac{x^2}{2}\sin 2x + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ sin 4x cos 7x dx `
` ∫ cos mx cos nx dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int \cot^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]