मराठी

∫ 1 3 + 2 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{3 + 2 \sin x + \cos x}dx\]
\[\text{ Putting sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and cos x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{3 + 2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{3\left( 1 + \tan^2 \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{3 + 3 \tan^2 \left( \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)} dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{2 \tan^2 \left( \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 4}dx\]
\[ = \frac{1}{2}\int \frac{\sec^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 2}dx\]
\[\text{  Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) \times \frac{1}{2} dx = dt\]
\[ \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = \frac{1}{2} \int \frac{2 dt}{t^2 + 2 t + 2}\]
\[ = \int \frac{dt}{t^2 + 2t + 1 + 1}\]
\[ = \int \frac{dt}{\left( t + 1 \right)^2 + 1^2}\]
\[ = \tan^{- 1} \left( \frac{t + 1}{1} \right) + C\]
\[ = \tan^{- 1} \left( 1 + \tan \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 6 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×