Advertisements
Advertisements
प्रश्न
\[\int\text{ cos x cos 2x cos 3x dx}\]
बेरीज
उत्तर
\[\int\text{ cos x . cos 2x . cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]