मराठी

∫ X Sin − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
बेरीज

उत्तर

\[\int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\text{ Let} \sin^{- 1} x = \theta\]
\[x = \sin \theta\]
\[dx =  \text{ cos   θ  dθ }\]
\[ \therefore \int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \int \frac{\left( \sin \theta \right) . \theta}{\sqrt{1 - \sin^2 \theta}} . \text{ cos   θ  dθ }\]
\[ = \int \frac{\left( \sin \theta \right) . \theta}{\cos \theta} . \text{ cos   θ  dθ }\]
\[ = \int \theta_I . \sin_{II} \text{   θ  dθ }\]
\[ = \theta\int\sin \text{    θ  dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{    θ  dθ }\right\}d\theta\]
\[ = \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta\]
\[ = - \theta \cos \theta + \sin \theta + C\]
\[ = - \theta \sqrt{1 - \sin^2 \theta} + \sin \theta + C\]
\[ = - \sin^{- 1} x \sqrt{1 - x^2} + x + C \left( \because \sin^{- 1} x = \theta \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 52 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×