Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
बेरीज
उत्तर
\[\int\left( \frac{1 - x^4}{1 - x} \right)dx\]
\[ = \int\frac{\left( 1 - x^2 \right) \left( 1 + x^2 \right)}{\left( 1 - x \right)}dx\]
\[ = \int\frac{\left( 1 - x \right) \left( 1 + x \right) \left( 1 + x^2 \right)}{\left( 1 - x \right)}dx\]
\[ = \int\left( 1 + x \right) \left( 1 + x^2 \right)dx\]
\[ = \int\left( 1 + x^2 + x + x^3 \right)dx\]
\[ = x + \frac{x^3}{3} + \frac{x^2}{2} + \frac{x^4}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
` ∫ cos 3x cos 4x` dx
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int x \cos x\ dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int x^2 \sin^2 x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{\cos^7 x}{\sin x} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`