मराठी

If ∫ Cos 8 X + 1 Tan 2 X − Cot 2 X D X (A) − 1 16 (B) 1 8 (C) 1 16 (D) − 1 8 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]

पर्याय

  • \[- \frac{1}{16}\]

  • \[\frac{1}{8}\]

  • \[\frac{1}{16}\]

  • \[- \frac{1}{8}\]

MCQ

उत्तर

\[\frac{1}{16}\]

 

\[\text{If }\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx = a \cos 8x + C ............(1) \]
\[\text{Considering the LHS of eq. } (1)\]
\[\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx\]
\[ \Rightarrow \int\left( \frac{2 \cos^2 4x}{\frac{\sin 2x}{\cos 2x} - \frac{\cos 2x}{\sin 2x}} \right)dx\]
\[ \Rightarrow \int\frac{2 \cos^2 4x}{\left( \sin^2 2x - \cos^2 2x \right)} \times \sin 2x \cos 2x\]
\[ \Rightarrow \int\left[ \frac{- \cos^2 4x \times 2 \sin 2x \cdot \cos 2x}{\cos^2 2x - \sin^2 2x} \right]dx\]
\[ \Rightarrow \int\frac{- \cos^2 4x \times \sin 4x}{\cos 4x}dx ................\left( \because \cos 2x = \cos^2 x - \sin^2 x \right)\]
\[ \Rightarrow \frac{1}{2}\int - 2 \sin 4x \cos 4x dx \]
\[ \Rightarrow \frac{- 1}{2}\int\sin 8x dx\]
\[ \Rightarrow - \frac{1}{2}\left[ \frac{- \cos 8x}{8} \right] + C\]
\[ = \frac{1}{16}\left[ \cos 8x \right] + C ...............(2) \]
\[\text{Comparing RHS of eq. (1) with the eq. } (2)\]
\[ \therefore a = \frac{1}{16}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 7 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^3    x   sec^2  x   dx  `

` ∫      tan^5    x   dx `


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×