Advertisements
Advertisements
प्रश्न
` = ∫ root (3){ cos^2 x} sin x dx `
बेरीज
उत्तर
\[\int \left( \cos^2 x \right)^\frac{1}{3} \sin x dx\]
\[Let, \cos x = t\]
\[ \Rightarrow - \ sin x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin x dx} = - dt\]
\[Now, \int \left( \cos^2 x \right)^\frac{1}{3} \text{sin x dx}\]
\[ = - \int t^\frac{2}{3} dt\]
\[ = - \left[ \frac{t^\frac{2}{3} + 1}{\frac{2}{3} + 1} \right] + C\]
\[ = - \frac{3}{5} t^\frac{5}{3} + C\]
\[ = - \frac{3}{5} \cos^\frac{5}{3} x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{a}{b + c e^x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int \cos^5 x\ dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]