मराठी

∫ 1 1 + √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + \sqrt{x}} dx\]
बेरीज

उत्तर

\[\int \frac{dx}{1 + \sqrt{x}}\]
\[ = \int\frac{\sqrt{x} dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[\text{Let 1} + \sqrt{x} = t\]
\[ \Rightarrow \sqrt{x} = t - 1\]


\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]

\[Now, \int\frac{\sqrt{x}}{\sqrt{x}\left( 1 + \sqrt{x} \right)}dx\]
\[ = 2\int\left( \frac{t - 1}{t} \right)dt\]
\[ = 2\int\left( 1 - \frac{1}{t} \right)dt\]
\[ = 2 \left( t - \text{log} \left| t \right| \right) + C\]
\[ = 2 \left( 1 + \sqrt{x} \right) - 2 \log \left| 1 + \sqrt{x} \right| + C\]
\[\text{Let} \text{ C }+ 2 = C'\]
\[ = 2\sqrt{x} - \text{2  log} \left( 1 + \sqrt{x} \right) + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 23 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×