मराठी

∫ 1 5 + 7 Cos X + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{5 + 7 \cos x + \sin x} \text{ dx }\]
\[\text{ Putting cos x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{5 + 7 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 7 - 7 \tan^2 \frac{x}{2} + 2 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{- 2 \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 12}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
 `therefore I =∫   {2    dt}/{- 2 t^2 + 2t + 12} `
\[ = \int \frac{dt}{- t^2 + t + 6}\]
\[ = \int \frac{- dt}{t^2 - t - 6}\]
\[ = \int \frac{- dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]
\[ = \int \frac{dt}{\left( \frac{5}{2} \right)^2 - \left( t - \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{5}{2}}\text{ log }\left| \frac{\frac{5}{2} + t - \frac{1}{2}}{\frac{5}{2} - t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ log }\left| \frac{2 + t}{3 - t} \right| + C\]
\[ = \frac{1}{5}\text{ log } \left| \frac{2 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 15 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x e^{2x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×