Advertisements
Advertisements
प्रश्न
\[\int \cos^{- 1} \left( \sin x \right) dx\]
बेरीज
उत्तर
\[\int \cos^{- 1} \left( \sin x \right)dx\]
\[ = \int \cos^{- 1} \left( \cos\left( \frac{\pi}{2} - x \right) \right)dx \left[ \therefore \sin x = \cos\left( \frac{\pi}{2} - x \right) \right]\]
\[ = \int\left( \frac{\pi}{2} - x \right)dx\]
` = (π x)/ 2 - x^2 / 2 + c `
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \cot^6 x \text{ dx }\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]