Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int x^2 \sqrt{a^6 - x^6}\text{ \text{ dx}}\]
\[ = \int x^2 \sqrt{\left( a^3 \right)^2 - \left( x^3 \right)^2}\text{ dx}\]
\[Putting\ x^3 = t\]
\[ \Rightarrow 3 x^2 dx = dt\]
\[ \Rightarrow x^2 dx = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\sqrt{\left( a^3 \right)^2 - t^2}dt\]
\[ = \frac{1}{3} \left[ \frac{t}{2}\sqrt{\left( a^3 \right)^2 - t^2} + \frac{\left( a^3 \right)^2}{2} \text{ sin}^{- 1} \left( \frac{t}{a^3} \right) \right] + C\]
\[ = \frac{x^3}{6} \sqrt{a^6 - x^6} + \frac{a^6}{6} \text{ sin}^{- 1} \left( \frac{x^3}{a^3} \right) + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]