मराठी

∫ ( 2 X − 5 ) √ 2 + 3 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Also,} 2x - 5 = \lambda\frac{d}{dx}\left( 2 + 3x - x^2 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \lambda\left( - 2x + 3 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \left( - 2\lambda \right)x + 3\lambda + \mu\]

\[\text{Equating coeffieicents of like terms}\]

\[ - 2\lambda = 2\]

\[ \Rightarrow \lambda = - 1\]

\[\text{ And }\]

\[3\lambda + \mu = - 5\]

\[ \Rightarrow 3\left( - 1 \right) + \mu = - 5\]

\[ \Rightarrow \mu = - 5 + 3\]

\[ \Rightarrow \mu = - 2\]

\[ \therefore 2x - 5 = - 1\left( - 2x + 3 \right) - 2\]

\[\text{ Hence,} I = \int \left[ - \left( - 2x + 3 \right) - 2 \right] \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - \int \left( - 2x + 3 \right) \sqrt{2 + 3x - x^2}dx - 2\int\sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - I_1 - 2 I_2 . . . . . \left( 1 \right)\]

\[ I_1 = \int\left( - 2x + 3 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Let } 2 + 3x - x^2 = t\]

\[ \Rightarrow \left( - 2x + 3 \right)dx = dt\]

\[ \therefore I_1 = \int t^\frac{1}{2} dt\]

\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1}\]

\[ = \frac{2}{3} t^\frac{3}{2} \]

\[ = \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} . . . . . \left( 2 \right)\]

\[\text{ And I}_2 = \int \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ I_2 = \int \sqrt{2 - \left( x^2 - 3x \right)} \text{  dx }\]

\[ = \int \sqrt{2 - \left[ x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right]} dx\]

\[ = \int\sqrt{2 + \frac{9}{4} - \left( x - \frac{3}{2} \right)^2} dx\]

\[ = \int \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} \text{  dx }\]

\[ = \frac{x - \frac{3}{2}}{2} \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} + \frac{\left( \frac{\sqrt{17}}{2} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{17}}{2}} \right)\]

\[ = \frac{2x - 3}{4}\sqrt{2 + 3x - x^2} + \frac{17}{8} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) . . . . . \left( 3 \right)\]

\[\text{ From eq }\left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]

\[I = - \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} - \frac{\left( 2x - 3 \right)}{2}\sqrt{2 + 3x - x^2} - \frac{17}{4} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 3 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×