मराठी

∫ X √ X 2 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{x^2 + x} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int x\sqrt{x^2 + x}dx\]
\[\text{ Also, }x = \lambda\frac{d}{dx}\left( x^2 + x \right) + \mu\]
\[ \Rightarrow x = \lambda\left( 2x + 1 \right) + \mu\]
\[ \Rightarrow x = \left( 2\lambda \right)x + \lambda + \mu\]
\[\text{Equating coefficient of like terms}\]
\[2\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
\[\text{ And }\]
\[\lambda + \mu = 0\]
\[ \Rightarrow \mu = - \frac{1}{2}\]
\[ \therefore I = \int \left[ \frac{1}{2}\left( 2x + 1 \right) - \frac{1}{2} \right] \sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x} \text{  dx }- \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\text{  dx }\]
\[\text{ Let x}^2 + x = t\]
\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \frac{1}{2}\int\sqrt{t} \text{ dt }- \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2} \sqrt{x^2 + x} - \frac{1}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]
\[ = \frac{1}{3} \left( x^2 + x \right)^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 10 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×