मराठी

∫ X Sin − 1 X ( 1 − X 2 ) 3 / 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^\frac{3}{2}} dx\]

\[\text{ Putting  sin}^{- 1} x = \theta\]

\[ \Rightarrow x = \sin\theta\]

\[ \Rightarrow dx = \cos\text{ θ    dθ}\]

\[ \therefore I = \int\frac{\text{ sin θ   θ  cosθ  dθ }}{\left( 1 - \sin^2 \theta \right)^\frac{3}{2}}\]

\[ = \int\frac{\theta \sin\theta \cos\text{ θ    dθ}}{\left( \cos^2 \theta \right)^\frac{3}{2}}\]

\[ = \int\theta\frac{\sin\theta}{\cos^2 \theta} d\theta\]

\[ = \int \theta_I \sec \theta_{II}  \tan   \text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \int1 \times \sec\text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \int\sec \text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \text{ log }\left| \sec\theta + \tan\theta \right| + C\]

\[ = \frac{\theta}{\cos\theta} - \text{ log }\left| \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log }\left| \frac{1 + \sin\theta}{\cos\theta} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log }\left| \frac{1 + \sin\theta}{\sqrt{1 - \sin^2 \theta}} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log} \left| \frac{\sqrt{1 + \sin\theta}}{\sqrt{1 - \sin\theta}} \right| + C\]

\[ = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} - \text{ log }\left| \frac{\sqrt{1 + x}}{\sqrt{1 - x}} \right| + C\]

\[ = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} - \frac{1}{2} \text{ log} \left| \frac{1 + x}{1 - x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 117 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×