Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right)dx\]
\[ = \int x^{- \frac{1}{2}} \left( 1 + \frac{1}{x} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + \frac{1}{x^\frac{3}{2}} \right)dx\]
\[ = \int x^{- \frac{1}{2}} dx + \int x^{- \frac{3}{2}} dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \left[ \frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1} \right]\]
\[ = 2\sqrt{x} - \frac{2}{\sqrt{x}} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ sin x \sqrt (1-cos 2x) dx `
Integrate the following integrals:
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]