मराठी

∫ 18 ( X + 2 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)}dx\]

\[\text{Let }\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A \left( x^2 + 4 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 4 \right)}\]

\[ \Rightarrow 18 = A x^2 + 4A + B x^2 + 2Bx + Cx + 2C\]

\[ \Rightarrow 18 = \left( A + B \right) x^2 + x \left( 2B + C \right) + 4A + 2C\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[2B + C = 0 . . . . . \left( 2 \right)\]

\[4A + 2C = 18 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{9}{4}\]

\[B = - \frac{9}{4}\]

\[C = \frac{9}{2}\]

\[ \therefore \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} + \frac{- \frac{9}{4}x + \frac{9}{2}}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} - \frac{9}{4} \left( \frac{x}{x^2 + 4} \right) + \frac{9}{2 \left( x^2 + 4 \right)}\]

\[ \Rightarrow \int\frac{18 dx}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{4}\int\frac{x dx}{x^2 + 4} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[\text{Let }x^2 + 4 = t\]

\[ \Rightarrow 2xdx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{8}\int\frac{dt}{t} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| t \right| + \frac{9}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| x^2 + 4 \right| + \frac{9}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 35 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×