Advertisements
Advertisements
प्रश्न
\[\int \sec^4 x\ dx\]
बेरीज
उत्तर
\[\text{ Let I } = \int \sec^4 x\ dx\]
\[ = \int \sec^2 x \cdot \sec^2 x\ dx\]
\[ = \int\left( 1 + \tan^2 x \right) \cdot \sec^2 x\ dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx = dt}\]
\[ \therefore I = \int\left( 1 + t^2 \right) dt\]
\[ = \int dt + \int t^2 dt\]
\[ = t + \frac{t^3}{3} + C\]
\[ = \tan x + \frac{1}{3} \tan^3 x + C................ \left[ \because t = \tan x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^2 \text{ cos x dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]