मराठी

∫ X 3 Cos X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^3 \cos x^2 dx\]
बेरीज

उत्तर

\[\int x^3 \cos x^2 \text{ dx }\]
\[\text{  Let x}^2 = t \]
\[ \Rightarrow 2x = \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{2x}\]
\[ = \frac{1}{2}\left[ \int t \text{ cos t dt } \right]\]
\[\text{Taking t as the first function and cos t as the second function} . \]
\[ = \frac{1}{2}\left[ t\sin t - \int\text{ sin t dt } \right]\]
\[ = \frac{1}{2}\left[ t\sin t + \cos t \right] . . . (1) \]
\[\text{Substituting the value of t in eq} \text{  (1) } \]
\[ = \frac{x^2 \sin x^2}{2} + \frac{\cos x^2}{2} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 18 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×