मराठी

∫ 1 2 X 2 − X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 x^2 - x - 1} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{2 x^2 - x - 1}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} + \left( \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \frac{1}{16} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{1 + 8}{16} \right)}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[\text{ let x } - \frac{1}{4} = t\]
\[ \Rightarrow dx = dt\]

\[Now, \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2 \times \frac{3}{4}} \times \frac{1}{2} \text{ log }\left| \frac{t - \frac{3}{4}}{t + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log }\left| \frac{x - \frac{1}{4} - \frac{3}{4}}{x - \frac{1}{4} + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log } \left| \frac{x - 1}{x + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{2\left( x - 1 \right)}{2x + 1} \right| + C\]
\[ = \frac{1}{3} \left[ \text{ log }\left| \frac{\left( x - 1 \right)}{2x + 1} \right| + \text{ log }\left| 2 \right| \right] + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + \frac{1}{3} \text{ log }\left| 2 \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + C' \left[ \because C' = \frac{1}{3} \text{ log } \left| 2 \right| + C \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.15 | Q 4 | पृष्ठ ८६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×