Advertisements
Advertisements
प्रश्न
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{- \sin x + 2\cos x}{2\sin x + \cos x}dx\]
\[\text{Putting}\ 2\sin x + \cos x = t\]
\[ \Rightarrow 2\cos x - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + 2\cos x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln}\left| t \right| + C\]
\[ = \text{ln }\left| 2\sin x + \cos x \right| + C \left[ \because t = 2\sin x + \cos x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` ∫ tan x sec^4 x dx `
` ∫ tan^5 x sec ^4 x dx `
` ∫ sec^6 x tan x dx `
\[\int \sec^4 2x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]