मराठी

Evaluate the Following Integrals: ∫ X 7 ( a 2 − X 2 ) 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
बेरीज

उत्तर

\[\text{Let I} = \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[ \text{Let x} = a \sin\theta\]

\[ \text{On differentiating both sides, we get}\]

`  dx =  a  cos  θ  dθ `

\[ \therefore I = \int\frac{a^8 \sin^7 \theta \cos\theta}{\left( a^2 - a^2 \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{a^8 \sin^7 \theta \cos\theta}{a^{10} \left( 1 - \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{\sin^7 \theta}{a^2 \cos^9 \theta}d\theta\]

\[ = \frac{1}{a^2}\int \tan^7 \theta \sec^2 \theta d\theta\]

\[\]

\[ \text{Let} \tan\theta = t\]

` " On differentiating both sides, we get" `

`sec^2 θ  dθ  = dt`

\[ \therefore I = \frac{1}{a^2}\int t^7 dt\]

\[ = \frac{1}{a^2}\frac{t^8}{8} + c\]

\[ = \frac{1}{8 a^2}\left( \tan^8 \theta \right) + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \sin^{- 1} \frac{x}{a} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \tan^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \frac{x}{\sqrt{a^2 - x^2}} \right)^8 + c\]

\[ = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

\[Hence, \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.13 | Q 2 | पृष्ठ ७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×