Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{Let I} = \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[ \text{Let x} = a \sin\theta\]
\[ \text{On differentiating both sides, we get}\]
` dx = a cos θ dθ `
\[ \therefore I = \int\frac{a^8 \sin^7 \theta \cos\theta}{\left( a^2 - a^2 \sin^2 \theta \right)^5}d\theta\]
\[ = \int\frac{a^8 \sin^7 \theta \cos\theta}{a^{10} \left( 1 - \sin^2 \theta \right)^5}d\theta\]
\[ = \int\frac{\sin^7 \theta}{a^2 \cos^9 \theta}d\theta\]
\[ = \frac{1}{a^2}\int \tan^7 \theta \sec^2 \theta d\theta\]
\[\]
\[ \text{Let} \tan\theta = t\]
` " On differentiating both sides, we get" `
`sec^2 θ dθ = dt`
\[ \therefore I = \frac{1}{a^2}\int t^7 dt\]
\[ = \frac{1}{a^2}\frac{t^8}{8} + c\]
\[ = \frac{1}{8 a^2}\left( \tan^8 \theta \right) + c\]
\[ = \frac{1}{8 a^2} \left( \tan\left( \sin^{- 1} \frac{x}{a} \right) \right)^8 + c\]
\[ = \frac{1}{8 a^2} \left( \tan\left( \tan^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) \right)^8 + c\]
\[ = \frac{1}{8 a^2} \left( \frac{x}{\sqrt{a^2 - x^2}} \right)^8 + c\]
\[ = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]
\[Hence, \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int \sec^4 x\ dx\]