मराठी

∫ √ Cot θ D θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]
बेरीज

उत्तर

\[\text{ We have,} \]

\[I = \int\sqrt{\cot \theta} d   \text{ θ}\]

\[\text{ Putting  cot} \text{ θ} = t^2 \]

\[ \Rightarrow - {cosec}^2 \text{ θ dθ}= 2t \text{ dt }\]

\[ \Rightarrow d\theta = - \frac{2t \text{ dt }}{\cos e c^2 \text{ θ }}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + co t^2 \text{ θ}}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + t^4}\]

\[ \therefore I = \int t\left( \frac{- 2t \text{ dt }}{1 + t^4} \right)\]

\[ = - \int\left( \frac{2 t^2}{1 + t^4} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1 + t^2 - 1}{t^4 + 1} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]

` \text{Dividing numerator and denominator by} \text{  t}^2 `

\[I = - \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]

\[\text{ Putting   t} - \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[\text{ Putting}\ t + \frac{1}{t} = q\]

\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]

\[I = - \int \frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{1 + \frac{1}{t} + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} t} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{t^2 + 1 - \sqrt{2}t}{t^2 + 1 + \sqrt{2}t} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\cot \theta - 1}{2\sqrt{\cot \theta}} \right) - \frac{1}{2\sqrt{2}}\text{ log } \left| \frac{\cot \theta + 1 - \sqrt{2 \cot \theta}}{\cot \theta + 1 + \sqrt{2 \cot \theta}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 2 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×