मराठी

∫ X 2 − 2 X 5 − X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{x^2 - 2}{x^5 - x} \right) dx\]
\[ = \int\frac{\left( x^2 - 2 \right)}{x \left( x^4 - 1 \right)}dx\]
\[ = \int\frac{x \left( x^2 - 2 \right)}{x^2 \left( x^2 - 1 \right) \left( x^2 + 1 \right)}dx\]
\[\text{ Putting x^2 = t}\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{\left( t - 2 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\text{  dt }\]
\[\text{ Let }  \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t - 1} + \frac{C}{t + 1}\]
\[ \Rightarrow \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A \left( t - 1 \right) \left( t + 1 \right) + Bt \left( t + 1 \right) + Ct \cdot \left( t - 1 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\]
\[ \Rightarrow t - 2 = A \left( t - 1 \right) \left( t + 1 \right) + B t \left( t + 1 \right) + C t \left( t - 1 \right)\]
\[\text{ Putting t = 1}\]
\[ \therefore 1 - 2 = B \times 2\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{ Putting t = 0}\]
\[ \therefore - 2 = A \left( - 1 \right)\]
\[ \Rightarrow A = 2\]
\[\text{ Putting t = - 1}\]
\[ \therefore - 3 = C \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow C = - \frac{3}{2}\]
\[ \therefore I = \frac{2}{2}\int\frac{dt}{t} - \frac{1}{2 \times 2}\int\frac{dt}{t - 1} - \frac{3}{2 \times 2}\int\frac{d}{t + 1}\]
\[ = \text{ log} \left| t \right| - \frac{1}{4} \text{ log }\left| t - 1 \right| - \frac{3}{4} \text{ log} \left| t + 1 \right| + C\]
\[ = \text{ log }\left| x^2 \right| - \frac{1}{4} \text{ log }\left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]
\[ = 2 \text{ log } \left| x \right| - \frac{1}{4} \text{ log} \left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 126 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \cot^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^4 2x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×