मराठी

∫ Cos 2 X − 1 Cos 2 X + 1 D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

पर्याय

  • tan x − x + C

  • x + tan x + C

  • x − tan x + C

  • − x − cot x + C

MCQ

उत्तर

x − tan x + C

\[\int\left( \frac{\cos 2x - 1}{\cos 2x + 1} \right)dx\]

\[ = \int\left( \frac{1 - 2 \sin^2 x - 1}{2 \cos^2 x - 1 + 1} \right)dx\]

\[ = - \int \tan^2 x dx\]

\[ = - \int\left( \sec^2 x - 1 \right)dx\]

\[ = \int\left( 1 - \sec^2 x \right)dx\]

\[ = x - \tan x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 30 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×