मराठी

∫ Log ( 1 − X ) X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\log \left( 1 - x \right)}{x^2}dx\]
\[ = \int \frac{1}{x^2}_{II} \log \left( 1_I - x \right) \text{ dx}\]
\[ = \text{ log }\left( 1 - x \right)\int x^{- 2} dx - \int\frac{- 1}{1 - x} \times \left( \frac{x^{- 2 + 1}}{- 2 + 1} \right) dx\]
\[ = \text{ log} \left( 1 - x \right) \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \int\frac{- 1}{\left( 1 - x \right) x}dx\]
\[ = \text{ log} \left( 1 - x \right) \times \left( - \frac{1}{x} \right) + \int\frac{1}{x^2 - x}dx\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \int\frac{1}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \int\frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \frac{1}{2 \times \frac{1}{2}} \text{ log} \left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \text{ log} \left| \frac{x - 1}{x} \right| + C\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \text{ log }\left| \left( x - 1 \right) \right| - \log x + C\]
\[ = - \frac{\text{ log} \left| 1 - x \right|}{x} + \text{ log }\left| 1 - x \right| - \text{ log }\left| x \right| + C\]
\[ = \left( 1 - \frac{1}{x} \right) \text{ log} \left| 1 - x \right| - \text{ log} \left| x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 99 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×