Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]
\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]
\[ = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[\text{Let }\frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]
\[\text{Equating coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[A = \frac{1}{2}\]
\[B = - \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\left( \frac{- x + 1}{x^2 + 1} \right) dx\]
\[ = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]
\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]
\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]
APPEARS IN
संबंधित प्रश्न
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
Evaluate the following integrals:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to