मराठी

∫ 1 1 + X + X 2 + X 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]

\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]

\[ = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]

\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[B + C = 0 . . . . . \left( 2 \right)\]

\[A + C = 1 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{2}\]

\[B = - \frac{1}{2}\]

\[C = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\left( \frac{- x + 1}{x^2 + 1} \right) dx\]

\[ = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 38 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{1 + \sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×