हिंदी

∫ 1 1 + X + X 2 + X 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]

\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]

\[ = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]

\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[B + C = 0 . . . . . \left( 2 \right)\]

\[A + C = 1 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{2}\]

\[B = - \frac{1}{2}\]

\[C = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\left( \frac{- x + 1}{x^2 + 1} \right) dx\]

\[ = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 38 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1}{1 - \sin x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×